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_n24,| : Abstract B

“We consider)the interconnection of two multiple-access/broadcast networks, each of
which connects a large population of bursty users via a packet-switched, random-access
channel. In each network a statiom, called bridge node, receives internetwork packets
from the localﬁggsts «nd forwards thew to the bridge node of the destination network via

. a point-to-point link; the bridge node of the deatination network places these internetwork
Toned prd 4 e

packets in its queue for subsequent broadcasting to the local users. Qe~eonstdes two

VY,
ways of multiplexing the local traffic and the internetwork traffic: a) contention
s 4

AT
multiplexing, b) channel division multiplexing. Under contention multiplexing, the

etule sl Al

bridge node uses the same random-access channel that the local users use, and therefore

it participates in the contention. Under channel division multiplexing, the channel in

ALA.

each of the two networks is subdivided into a node subchannel, used exclusively by the

avate’s

bridge node, and a random-access channel, used by the local users. Assuming that the

F o
input traffic in network 1, i=1,2, is Poisson with intensity Xi' the stability region of

&

the interconnected system is defined ags S = {(Al.kz): the packet delay is finite with

probability one}. We develop an analysis method for determining a subset of S, and we

give explicit results when the Stack random-access algorithm is used to resolve conflicts

at the local level.

. This work was supported by the National Science Foundation under grant ECS-85-06916
and by the Air Force Office of Scientific Research under grant AFOSR-83-0229.
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I. INTRODUCTION

Network interconnection is a necessity when we want to provide full comnectivity
to geographically separated networks, but it can also be used to enhance performance
and reliability in a fully connected network by appropriately clustering its users into
self-contained interconnected subnetworks.

In this paper, we consider the interconnection of two multiple-access;broadcast
networks, each of which connects a large population of bursty users via a packet-
switched, random-access, broadcast channel. Both networks are assumed single-hop;
that is, a transmission from any one user can be-heard by all other users ;n its .
own network. However, no user in one network can hear the transmission of a user
in the other network. Intermetwork communication is accomplished by means of a
point-to-point link, called bridge link, connecting two stations, one in each network,
called bridge nodes. The function of a bridge node is twofold: a) It relays internet-
work traffic, (i.e., traffic generated in one network and destined to the other),
to the bridge node of the other network via the bridge link. b) It broadcasts
internetwork traffic received from the other bridge node to the users of its own
network, (local users). The setting is illustrated graphically in Figure 1, and can
be used to model several networking scenaria. For example, the bridge link might be
a satellite or a microwave link connecting widely separated local terrestrial packet-
radio networks, or a gateway connecting collocated local cable networks.

We will adopt the infinite population, Poisson user model for each of the two
networks. Users transmit messages in the form of fixed length packets. Packets
are generated by all users of network i, i=1,2, according to an independent Poisson
process at a rate of Ai packets per unit time. Since the channel in each network
is shared, simultaneous transmissions result in packet collisions. Collided packets

are assumed destroyed and they have to be retransmitted at some later time. Packet

transmissions and retransmissions are coordinated by a random-access algorithm (RAA)

(In this paper we will adopt the Stack algorithm, €1, 2z, 3, 4)).
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A packet generated in network i, i=1,2, may be an intranetwork packet or an

internetwork packet. An intranetwork packet has a final destination in the network
in which it was generated. Therefore, an intranetwork packet leaves the system after
its first successful transmission (one hop). An internetwork packet generated in net-
vork 1(2) was a final destination in network 2(1). Therefore, such a packet leaves
the system only after it has been successfully transmitted in both netvorks: This

is accomplished in three hops, as follows. Upon successful transmission in the net-
vork that generated it, (first hop), an internetwork packet is received by the local
tridge node, which, thcn, transmits it to the bridge node of the destina;ion network
via the bridge link, (second hop). The bridge node of the destination network stores
the packet for subsequent broadcasting to local users; upon successful broadcasting,
(third hop), the packet leaves the system.

A bridge node must be able to distinguish between intranetwork and internetwork
packets, in order to know which packets to transmit over the bridge link. We will
assume that this information can be extracted from the address field in each packet.
Furthermore, since packets may arrive faster than they can be retransmitted, the
bridge node must contain enough buffer space in which packets are temporarily queued.
The queueing model of.a bridge node is illustrated in Figure 2. It consists of two

queues, referred to as the network queue and the link queue. The network queue

contains the packets that were received on the bridge link and are waiting to be
broadcast to fhe local users; the link queue contains the packets that were received
on the local random-access channel and are waiting to be transmitted on the bridge
link.

The volume of traffic that can be supported before the interconnected system
becomes congested, and the delay that a packet experiences until it reaches its final
destination depend on how the available system resources (the two broadcast channels

and the bridge link channel), are allocated among the network users and the

bridge nodes.
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For the bridge link channel we will assume that frequency or time division
multiplexing provides two way communication between the bridge nodes. Also, we will
agsume that transmissiong on the bridge link do not interfere with transmissions on

the broadcast channels.

In each of the two broadcast channels we have user transmissions origimating from

: the local users and coordinated by the underlying RAA, and node transmissions that are

) broadcast from the bridge node to the local users. For the multiplexing of the user
and node traffic on the broadcast channel we will consider the following possibilities:

a) Contention Multiplexing, b) Channel Division Multiplexing. Under contention multiplex-

e W we W S o

ing, the bridge node uses :hc'cana random-access channel that the local users use, and,

therefore, it participates in the contention. Under channel division multiplexing,

.f the channel is divided into a node subchannel, which is used exclusively for node

> transmisgsions, and a random-access user subchannel, which is used for user transmissions;
the channel division may be done either in the frequency domain or in the time domain.

The flow of packets in the interconnected system is shown in a block diagram

; form in Figure 3. The queues designated as DQ} and DQ? are distributed, and can

be thought of as abstract storage devices containing the packets that have been generated

by various network users but have not been successfully transmitted yet. Queue Q} is

9 the network queue of bridge node 1,i=1,2. Fo; simplicity in the analysis, the link

o queues of the bridge nodes have been eliminated from the block diagram of Figure 3.

4 That is, we assume that packets experience no queueing delay at the transmitting end

f of the bridge link. This assumption implies that for the link queue the service time

is less than the minimum interarrival time. which is true if the packet transmission

time in the bridge link is less than the packet transmission time in éhe local random-

access channel. The above assumption is not critical, since the system model with

the link queues included can be analyzed using the analysis techniques to be developed

"

for the model in Figure 3.
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. Under contention multiplexing the interconnected system is a system of four
interacting queues with state-dependent service time distribution. Queuing problems
of this kind have been known to be hard to treat analytically. What makes things worse
in our model is that queues UQ}, DQ? are distributed, and that queues Q}, Q? have non-
independent interarrival time processes with state-dependent distribution;.

Recognizing the analytical difficulties, we will only be concerned with the
determination of the region in the (Al,kz) plane in which the system is stable. The
system is called stable if the packet delay is finite with probability one. (A more
precigse stability definition for the system and its constituent queues viil be given
in Section II.B). The method of analysis uses an suxiliary system of queues that

d dominates the given one, (in the sense defined in Section II.D).

The stability analysis of the system under channel division multiplexing is less
difficult, since, by channel division, the four-queue system is deconpoéed into the
two tandem queue systems, (DQ}.Q?) and (DQ?,Q}), which evolve independently of each
) other.

. The organization of the paper is as follows. Section II presents the stability
analysis of the system under contention multiplexing, for specific transmission

N policies for the bridge nodes and the network us;;s. The system with channel
division multiplexing is studied in Section III. Section IV provides some concluding
remarks. The paper ends with an Appendix which includes results used in the main
body of the paper; some of these results are of independent interest, since they are

applicable to more general contexts than that of multiple access communication networks.

! I1. CONTENTION MULTIPLEXING

A. Chamel Model and Transmission Policies.

AR,

Under contention multiplexing, the bridge node and the users in each of the
two networks share a common random-access channel. A simple channel model is considered.
The channel time is divided into slots of length equal to the packet transmission time,

- which is taken as the unit of time. Slot n denotes the interval [n,n+l),n=0,1,2....

SYL SRR
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The bridge node and the users may initiate a packet transmission only at the beginning

i of a slot. If more than one packet are transmitted within the same slot, then a

packet collision occurs. It is assumed that a collision results in complete loss of

the information included in all the involved packets; thus, retransmission i{s then
necessary. If only one packet is transmitted in a slot, it is received with no errors,
and the transmission is said to be successful.

Regarding the interconnected system, we will make the following assumptions:
The system starts operating at time n=0 empty of packets. The pagket transmission
time (slot size)is the same in both broadcast channels and the channels are slot
synchronized; that is, the interval [n,n+l),0=0,1,2,..., corresponds to slot n in
both channels. The propagation delays in the bridge link and the broadcast channels,
and any processing delays at the bridge nodes and the users are zero. (The above
assumptions are not necessary, but allow us to avoid undue complication in the notation
and the statements of the results.)

Throughout the paper we will use the letter i as a superscript or subscript
to signify quantities that refer to network i, i=1,2. We will also use 1', where
1'=1 if 1=2, and 1'=2 if i=l.

Let the packets generated in network i be indexed according to their time of

generation and define the random variable

1 if the E-th packet generated in network i is an
i 1 k
pE = nternetwork packet

0 otherwise

1
3

; i
It will be assumed that the sequence {p,} is 1.i.d., with Pr(pg-l)-pi, and independent
of any other process in the system.

Next we specify the transmission policies for the bridge nodes and the users.

Transmission Policy for the Bridge Nodes

For bridge node i, define the i.i.d. discrete-time process {Tn;qzl} with

m et ' e - . . . *
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i _ 1 with probability ﬂi
0 with probability l-ni

» and asgume that {T:; n>1} is independent of any other process in the system.

At the beginning of each slot n, at which it transmitted a packet, the bridge

node i trsusmits a packet from its queue if and only if Ti-l.

We assume that by the end of a slot, in which it transmitted a packet, the bridge
node can determine whether the packet was successfully transmitted or collided with
local packets. A packet departs the queue if and only if 1t is successfully transmitted.
The probabilities Ty» T, are design parameters.

The packet priorities, i.e., the service discipline at the queue of a bridge
node, can be arbitrary but specified, although not necessarily the same for both
bridge nodes.

Transmigssion Policy for the Users

In each of the two networks users transmit their packets according to a RAA.

Among the plethora of RAAs that have been proposed for a single-hop environment,

we consider the n-ary Stack Algorithms (SAn). [1,2,3,4). We opted for this particular

algorithm because of its simplicity and relatively high performance. The method of
snalysis, however, can be applied to other popular RAA's, (e.g., Aloha-type algorithms,
Tree Search-type algorithms).

The SA, is a "limited feedback sensing" algorithm that uses binary feedback of
the "Collision-Non-Collision"” (C-NC) type. A user monitors the channel activity for
acquisition of feedback information only while it has a packet to transmit (limited
feedback sensing); we assume that, at the end of each slot, a user that monitors the
channel can determine whether that slot contained a collision or not (C-CN). Note
that in the interconnected system, a collision may have been caused by a node trans-
mission.

Let F: denote the binary feedback corresponding to slot n, of random-access

i
channel 1. Accordingly, Fn'NC. and F:-C represent a non-collision and a collision
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in slot n, respectively. The "limited feedback sensing" assumption implies that for

the transmission of a packet arrived during slot (n-1) no knowledge of the channel

feedback history, {Ft; k<n}, 1is necessary.

For the transmission of its packet £ a user utilizes a counter, whose indication

at the beginning of slot n is denoted by Ii(E). and it applies the following set of

rules that define the SAn:

1. For a packet £ arrived during slot (n-1) the user sets I;(E)-O
2. Packet £ is transmitted in slot n if and only if I:(E)'O

Packet £ is successfully transmitted in slot n if and.only if Ii(E)'O and

F1 =NC.

n

3. The updating of the counter indication Ii(E) is done as follows:

a) If sﬁ =NC and 1:(€)>o. then 1:+1(g) -Ii(E) -1

a+l
variable uniformly distributed on {0,1,...,n~1}, independent of any other

b) If F: =C and Ii(E) =0, then Ii &) = Ui+1(5), where U:+1(E) is a random

variable in the system, and n 1is a design parameter, n>2.

) If F: =C and 1:(5)>0. then I:+1(€) - I:(E)+ n- 1

Under the SAn the distributed queues DQ}, i=1,2, in Figure 3 take the form of
the "“stack"” shown in Figure 4. The stack is an abstract storage device consisting of
an infinite number of cells, labelled 0,1,2.... At the beginning of each slot n
the j-th cellof stack i contains all packets £ such that Ii(&) =§; §=0,1,2,....
Packets are eventually successfully transmitted after moving through the cells of
the stack in accordance with the rules defined above. To resolve conflicts, the
algorithm splits uniformly the group of collided user packets in the first n cells

of the stack. The integer n is an algorithmic parameter, whose value may be chosen

for performance optimization, [2].
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B. Some Related Random Variables and a Markov Chain

Let us define the following random variables:
B: = the number of packets in stack i,({.e., in DQ§), at time n.
Q: = the number of packets in Q} at time n.
Mi = the number of packets generated by the users of network i during slot n.
H: is Poisson distributed with intensity Ai'
i 1 1if a packet enters queue i, i=1,2, during slot n
4 {0 otherwvise

Note that A; =1 1f and only if the n-th slot of channel i i3 husy with a ‘'successful

user transmission of an internmetwork packet. Figure 5 is an illustration to aid in
the visualization of the random variables defined above; (node i, i=1,2, represents the
i-th random-access channel; the links that are directed towards a node represent

transmission attempts, while the outgoing links represent successful transmissions.)

The variable B: can be expreagsed as follows:

1,
1 i
B, =) C.(D
‘ j=0
vwhere C:(j) denotes the number of packets in cell j of stack i at the beginning of

slot n; (Ki-l) denotes the highest indexed cell of stack i that is possibly non-
empty at the beginning of slot n. The integer Ki can be thought of as the position of
a conceptual pointer that moves through the cells of stack i according to the following

rules:

1 1
max (K -1,1) 1f F = NC
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Next define the random vector zn.n-o,1,z,..., as follows:

z =1 . Q% (€0),enny D), (0., RRE-1) K K]

[

] s 021 (1)

=]

zo = [0, O, (0), (0), 1, 1]
From the description of the system, it can be seen that the process {Zn,qu} is a
Markov chain with countable state space Y = NoxNOxGxGx N:xN:, where NO(N:) is the set of
non-negative (positive) integers, and O is the set of finite sequences of non-negative

integers; 1i.e.,
0 = {(k,.k ) @ MeN; KLk N }
prkgeecealyy) P MENG Kykosee LN,
The ergodicity of {zn,qu} will be of concern, but first we will give a

precise definition of system stability.

C. Stability Definition and Stability Region

Let all packets generated in the system from the beginning of its operation be
indexed according to their time of generation. The delay, Glof the £-th packet is
defined as the time from the moment of its generation until the moment of its
successful reception at its final destination. OJ; main interest will be in the
asymptotic behavior of the distribution function of 62. as well ag that of the queue
sizes Bi and Q:, i=1,2. The asymptotic behavior will be described using the following
stability definitions, [5].
(1)

A sequence of proper random variables xn with distribution functions Fn

is called:
(a) Stable, if xn converges in distribution to a proper random variable.
(b) Substable, if there are proper distributions G, H, such that

G(x) < Fn(x)_i H(x), for every n and x.

1. A random variable is proper if it has a proper distribution function.

A distribution function F is proper if lim F(x) = 1, as x*».

- ~ ..
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. (c) Unstable, if {t 1is not substable.

It can be shown that the definition of substability is equivalent to the

. following:
é (b.1) The sequence Fn is relatively compact - i.e., each subsequence of Fn
i contains a stable sub-subsequence.
7 (b.2) 1lim F (x) =1 , 1lim F (x) = 0, uniformly in n.
.t x4 n X+ n
.
a (b.3) 1lim 1lim 1inf Fn(x) =1 , lim Jlim sup Fn(x) =0
T X+ o  aaet I a g
X}
:j In the context of random-~access networks, condition (b.3) has been used as
iﬁ the definition of stability in [8]}; in the case of non-negative random variables it
' takes the simpler form
N lim 1lim {nf Fn(x) =1
h s x40 o
-
r'E The following properties will be useful in the sequel.
}
Property 1. A stable sequence is substable
fﬂ; Property 2. If Xn and Yn are substable sequences, the sequence (xn + Yn)
:;kj is substable.
iy Property 3. Let Yn’ Xn, Zn be sequences of proper random variables with
gijj distributions Gn’ Fo» Hn’ respectively. If Yn’ Zn are substable and Gn(x)gfn(x)jﬁn(x),
.3H for every x and n, then Xn is substable.
[ ]
The interconnected system will be called stable, substable, or unstable if
e :
:s; the induced packet delay process {68’ £=1,2,...} 1s stable, substable, or unstable
.éh; respectively. Similarly, a queue will be called stable, substable, or unstable

according to the behavior of the corresponding queue size process.

Our main problem will be to try to find simple conditions on the input rates Xl
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and Xz that will guarantee (sub) stability of the interconnected system, or of a
particular queue in the system. In particular, we will be interested in determining

the stability region of the system, which is defined as

A

S= {(Xl.kz): lim 1lim inf Pr(8

<x) =1} 2)
x40  fjo :

L

(If the system is stable, then we will write "1lim" instead of "lim inf")

D. The Dominant System

In this section we construct an auxiliary system, called dominant system,

to be used 1ﬁ'the analysis of the real system. Network i, queue £, and afack i of the
dominant system will be referred to as dominant network i, dominant queue i, and
dominant stack i, respectively; also, a quantity X defined in the real system will

be denoted by X in the dominant system.

Except for the modifications in the transmission policies described below, the
dominant system coincides with the real system in all other respects. In particular,
the two systems have identical packet generation and routing patterns. That is,

a packet £ is generated at instant tE in dominant network i if and only if a packet
€ is generated at instant te in network i of the real system (packet £ can be thought
of as the copy of packet £); also, packet £ is an internetwork packet 1if and only if

packet £ is an internetwork packet; that is,
-1 _ 1
pE = pE » for every E. (3)

Transmission Policy for the Bridge Nodes in the Dominant System

If 63 >0, then, as in the real system, bridge node { in the dominant system

transmits a packet if and only if T: =1, where

=1 _ 1
‘1‘n 5 Tn » for every n. (4)
Modification 1. If 6: =0, then bridge node { in the dominant system transmits a

fictitious packet if and only if Ti = 1. A fictitious packet is not included in

the number of packets in the dominant queue, and it is removed from the dominant
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queue upon arrival of an ordinary packet.

Transmission Policy for the Users in the Dominant System.

Except for the following modification, the transmission rules for local packets
in the dominant system are a repetition of the rules defined for the real system,
with F:, E, Ii(ﬁ). Ui(E) replaced by ?1, £, ii(f), ﬁ;(E). respectively, where
ﬁ:(f) = U:(E), for every n and §.

Modification 2. At the end of each slot n for which f: = C and F: = NC..the updating
of the counter indication f:(g) of a packet £ in dominant stack i is done.as follows:
;+1(E) - Ji+1(E), where J:+1(E) 18 an integer random variable

uniformly distributed on {ﬁ;—l, i;...., E;

a) 1f I3(®) = 0, then T
+n-2}, independent of any other variable
in the system; where ﬁi is the position of the pointer in dominant stack 1 at

time n. (i: is updated according to the rules defined for Ki.)

b) 1f T5E) >0, thea X (B) = 1D -1

The rationale for the particular construction of the dominant system defined
above is the following. Modification 1 eliminates the dependency of a slot outcome
in network i on the state of the queue of bridge node {1 (Q; =0} vs Q: >0), and, there-
fore, makes the dominant system easier to analyze. However, to be able to relate
the dominant system to the real one, we need modification 2, it can be seen, after a
little (or a lot of) thought, that the following property is true.
Property A: If at time n, n=1,2,..., packet § is in cell j, (0§j<Ki). of stack i,
then, at time n, packet £ -1.e., the copy of packet £- is in cell j of dominant stack i.
Property B: A packet { departs stack i either at the same time or before packet £ departs

dominant .stack 1i.

The above properties are the key in proving the following proposition, which
specifies in what sense the constructed auxiliary system dominates the real system.

Proposition 1

Let (Q,F,P) be the common probability space of all random variables defined so far.
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The following inequalities are true for every wefl and every time n; n=1,2,....

Ei(j) > cicj) ; 1=1,2; §=0,1,2,... (5

n - n

gl > al; 1-1,2 (6)
n— n

=1, =2 1 2 .
B +Q 2B +Q (7.a)
=2 , =1 2 1

B, +Q 2B +Q (7.b)

Proof: Inequalities (5), (6) follow directly from property A. 7v prove (7.a) cuasider
the two-queue system S1 -(DQ},Q?) in the real system (Figure 5), aad th; cértesponding
systea 31 -(ﬁQ}.Q?) in the dominant system. Consider a packet £ and its copy £,

and assume that E departs Sl during slot n. If E is8 not an internetwork packet,

then, by (3) and property A, we have that packet §{ departed system 31 during slot k,
vhere k<n. If packet E is an internetwork packet, then it departs §1 from Q?. Define
2 -

, and A2 as follows:

]
: 1 1f a packet departs Q?(Q?) during slot j
) =

the variables A

3

0 otherwisge

Note that A% = T2 1(cl(0) = 0) I(Q; >0), and A2 = Ti 1(cL(0)=0) 13> > 0), where I(+)

3 ] i b i 3
is the indicator function of the event in the parenthesis. If Q: > 0, then, by (4)
and (5), the event Eﬁ = 1 implies the event Aﬁ = 1. If Q: = 0, then by property B,
packet £ departed Q2 during slot £, where £ < n. Thus, we have shown that a packet
departure from system 31 either implies a simultaneous departure from Sl’ or that the
departing packet from 31 is a copy of a packet that has already departed Sl. The
fact that both system S1 and 31 have 1J§nc1cal packet generation patterns completes

the proof of (7.a). The proof of (7.b) is the same.

E. Stability Analysis of the Dominant System

In this section we establish the conditions for substability of the queues in the

dominant system.
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The Dominant Distributed Queue

We first consider UQ}. i.e., dominant stack {, and the queue~-size process
{ii, n>l} associated witn it. In contrast to the real system, in the dominant
system local transmissions are subject to bridge node interference represented by

the i.i.d. process {f:, qzl} which is independent of any other process in the

SR .

system, (modification 1). This property permits us to study the stability of

1
DQ independently of any other component in the interconnected system. .

Figure 6 shows ﬁQ} with its associated input ﬁ;. queue size i:. bridge node
interference T:. and output 3i variables during slot n. Note that, by construction,
Mi = Mt for every n.

The output 5: 1s defined as follows:

0

-1 {1 if slot n is busy with the successful user transmission.
n

0 otherwise

Note that O+

n " (l-f:) I(Ei(O) =1), where I(*) is the indicator function of the event

in the parenthesis.
The subsystem of Figure 6 operates with the modified SAn in sessions. The

sessions are non-overlapping time intervals which partition the slotted time axis of K

channel i, and are defined as follows. Let

i

- - . =i
1 1; Rk+1 min {m : n> R

k’

i =1
1, Fn-l

R ! -
n

The interval [ii ’ §i+1) defines the k-th session of channel i in the dominant
system. From (8) and the rules of the modified SAn and its associated pointer, >

it is not difficult to see that at the instant just before the beginning of each

session dominant stack i is empty of packets. This observation leads to the following

properties:
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Property 1: Session lengths are i.1i.d. random variables. This follows from the
fact that (ﬁ:; n>0} and {Ti; n>1} are i.1.d processes independent of each other and
of any other process in the systea.
Remark: At first glance, it might seem that session lengths are dependent since
the operation of the modified SAn depends on the state of the real systems (see
modification 2). However, this is not so, because modification 2 introduces, in
effect, a mere reordering of cells, which does not affect the independence of session
lengths.
Property 2: The user packets that were successfully transmitted duriné the k-th
session of channel i, are the packets that were generated during the interval
[i\t -1, Rtﬂ -b. ‘
Let us now define the following random variables.

iz : the session length of the k-th session in channel i

5: : the number of successful user transmissions during the k-th session of channel {i.

Let, also

A: 4 Sup 0y E(L]) <w} (9)

- =1
where Ai E(Ml).

=1
By definition we have that Lk - Rk+1- Rk .a:d
=1 =1

H-I;Rk-i
By property 1, {ﬁi’ k>1} is a renewal process. We can now express the following

proposition regarding the stability of in.

- *
Proposition 2. The process {Bi; n>1} is substable if Xi < Ai .

Proof: Let {ﬁi; n>1} be the counting renewal process associated with.the renewal

process, {iig k>1}; that is,

Let also
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By definition, the process {A:; n>1} is regenerative(z)

with respect to the renewal
- * -

process {R:; kzl}. Since for Ai < Ai we have that E(I{)<~ , 1t follows from the

regenerative theorem (7, Thm.2] that {Ai; n>1l} is stable. Clearly, QgiigAi.

for every n>1; thus, by property 3 of section II.C {iigqg;} is a substable process.

By property 2, we have that _

i
6= 2

2, k=1,2,... (10) °
1 h | .

[ &

Where Ej denotes the number of packets generated in slot ikfj-z. Note that i:

is a stopping time for {;1; j>1}, since the event (f:-n} is independent of
- - =1 *
1’ Spqprcces I B(Lk)<v, or equivalently if li < Xi, then, taking expectations in
(10), and using Wald's theorem yields
-1 -1
E(G) = A E(Lk) , kwl,2,... (11)
The number of successful local transmissions, 5:, during the k-th session can

be thought of as a reward earned during the session. Note that Et depends on
it. but the pairs (ii. 5:) ,» k>1, are 1.i.d.. Thus, by a well-known result from the

*
theory of renewal reward processes [9, Thm.3.6.1] we have that 1if Ai < Xi, then

-1 & -4 -1 23 E(ai)
lim n E 0, =1lim n E(.E:O ) = e A a.e. (12)
n~4oo j=1 b oo =1 3 E(L)) 1
1l

» where the last equality in (12) follows from (11).

The Dominant Queue

Let us now consider the queue Qi of bridge node i in the dominant system.

In reference to Figure 7, the arrival process {K:. qzl} is the process of successful

2. A discrete-time process {Xn;qzl} is said to be regenerative with respect to
the renewal process {Rk; kzl}. if for every positive integer M and every sequence
11...., 1m’ with 0<11<...<1m. the joint distribution of xi +Rk veees Ky *Rk
1 n
is independent of k. )

Cart A ly s it ds
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internetwork packet transmissions in network i”; that is, K; =1, 1f a user packet {

is successfully transmitted in network i° during slot n, (i.e., ﬁi =1), and packet £

is an internetwork packet, (i.e., 65 =1); K: =0, otherwise. The departure

3

process (5:; n>1} 1s defined as follows:

- 1 4f dominant bridge node i successfully transmits a (real or
D= fictitious) packet in slot n

0 otherwise
Recall that in the dominant system bridge node { transmits a (real or fictitious
packet in glot n {f Ti =], and that its transmission is successful if no user packet

is transmitted in slot n, that is, if E:(O) = 0. Thus,

Y R B
D, =T I(Cn(O) 0)

In the stability analysis of.Q} ve will make use of the fact that both channel

i and channel 1 operate with the modified SAn in sessionsof i.1.d. lengths. To

this end, let us define the following random variables.

5: : the number of user internetwork packets that were successfully transmitted
during the k-th session of channel 1. °
ﬁ: ¢ the number of (real or fictitious) node packets that were successfully transmitted

during the k-th session of channel {.

Note that, by comstruction of the dominant system and the session, the quadruples

(it. 5:. §t. ﬁt). k>1, are 1.i.d., and the sequence (ft, Ei, §t,

2

k!
*

Consider channel i and assume that ki<ki. From (3) and (11) we have that

ﬁt), k>1, is independent

of the sequence (i:. 5:, S ﬁi). k>1.

st =1 ‘
E(Sk) - piki B(Lk). k=1,2,... (13)

Also, by theorem 2 in [7], as in (10), we have that




=1

vhere the last equality in (14) follows from (13). Let us define
=1
E(H,)
q, 8 1L

{ (16)

We can now express the following theorem regarding the substability of Q}

Theorem 1
The process {6:; n>1} is substable if

* *
Xi<li ’ A14<A10 » piox1n<d1

The proof of theorem 1 can be found in the Appendix.

Remarks :

1) In view of (14), (15), (16), and proposition 1, theorem 1 states that Q}

is substable if both 0Q? and UQ}' are substable and the (expected) long-run average
number of arrivals (pi,ki,) is less than the (expected) long-run average number of
departures (di)'

2) The stability of queues with non-i.i.d. arrival and departure processes has

been studied by Loynes [5], (see also [6]). These studies assume strict stationarity
of the arrival and departure processes. In our case, however, we cannot claim
stationarity or even asymptotic stationarity of the processes {Zﬁ‘; Q:l} and {Si; n>1},
since the operation of the dominant system depends on the operation of the underlying
real gystem. Nevertheless, theorem 1 shows that simple “{ntuitive'" stability criteria

can still be derived when the arrival and departure processes are associated with

renewal processes.
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F. Stability of the Real System. "
In this section we combine the stability results for the dominant system with .
the dominance relation, as expressed by proposition 1, to derive sufficient conditions ;
for the stability of the real system. We begin with the following theorems K
Theorem 2 '
The processes {Bi; n>1}, {B:: n>1}, {Qi; n>1}, and {Qi; n>1} are substable if "
A AT L A <AY L pA<d, , p,A,<d (18) :
1 272 11 72 272 1
Proof: E
By proposition 2 and theorem 1, processes {ii; n>i} and {6:: n>1}, i=1,2, ;

are substable. Thus, from property 2 of Section II.C we have that the processes
{3: + 6: . qg;} , i=1,2, are substable. From proposition 1 we have that, for
every wefl and every n, n>l,

i i

0<B- < B~ , 1=1,2,
- n— n
i i 17 =1 . =1°
0<Q < Q +B, <Qq +B ,1=1,2,

The theorem follows from property 3 of Section II.C.

Theorem 2 has the following interesting corSIIary, whose proof can be found .
in the Appendix.

Theotrem 3

If (18) holds, then the processes {Bi'ﬂil)-{BinZl}v{inQ31}'{Qi-ﬂzl} are stable,

and the Markov chain {Zn;qu},defined in (1), is ergodic.

Theorem 4

If (18) holds, then the system is stable; that is,

s o

lin 1lim Pr(6£<x) =1

x+© Lo

where 61 1is the delay of the £-th packet.

Lo bt 8%
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Proof

Consider the Markov chain {Zn;qu}, and let T,,T,.... be the times of successive

2
visits to state 0, where 0 is the element [0,0,(0),(0),1,1]) of the chain's state

space. (Note that 2,=0, by definition). By theorem 2, {Zn;qu} is ergodic; therefore,

the process {O.Tl.tz....} is a renewal process with finite interrenewal timé,
that is, E(T1+1'T1) = E(Tl)<°. i=1,2,.... Consider, now, the packet delay process
{5L:{Z}} and observe that it is regenerative with respect to {0,11,12,..}.

Since E(T,)<», it follows frcm (7, Thm. 2] that {GL;Lg; 18 stable.

A . * *
Let $ % {()2)) 2 Aj<h), Ay9h5, P2 <dye Py

the system. stability region S, as defined in (2). To determine S we need to compute

Az<d1}. Clearly, S 1s a subset of

the quantities A;.X;,dl, and dz. which, by definition, are functions of the system
* *
parameters AI’AZ'"I'"Z’ and n; in particular Ai = Xi(n.ﬂi) and 4, = di(n'"i’xi)'

*
Given the system parameters, Ai and d1 are determined using only quantities that refer

PRt

to one session of the modified SA,; specifically, the expected session length, E(fi),
and the expected number of successful node-transmissions during a session, E(ﬁi).
Since both the B(ii) and the E(ﬁ;) are not affected by modification 2 of Section II.B, ]
the analysis methods used in [2,3,4] for the original SA, can be used to compute
XI and di' Figure B shows X: as a function of ﬂi for n=2 and n=3. Note that, for
ﬂi-O, X: is the throughput of the SAn. (3]. Figure 9 gives the plots of di versus
Ai for n=2,3 and ﬂi-O.ZS.O.S. and 0.75. The stability subregion S, as determined by
the obtained values of A: and di' is shown in Figures 10, and 11 for n=2,3, and
for different values of "1' Moo Py» and Py
III. CHANNEL DIVISION MULTIPLEXING

Under channel division multiplexing, the available broadcast channel in each of

the two networks is divided into a note subchannel dedicated for node transmissions

and a random-access user subchannel dedicated for user transmissions. The channel
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The channel division may be done either in the frequency or in the time domain.
Under frequency division multiplexing (FDM), the available bandwidth W of

channel i is partitioned into a frequency band of width a§ W , assigned to the node

subchannel, and a frequency band of width a% W , assigned to the user subchannel ;where

i i 1, 1 )
unzo.augo.an-t-au 1 (19)

As long as its queue is non-empty, bridge node i transmits a packet (with probability
one) over the node subchannel. Since there is no multi-access interference and the
channel is assumed errorless, node transmissions are always successful. Hovever,.

the packet transmission time and, therefore, the service time of Q , is now 1/0N

units of time. The random-access user subchannel is shared by the users in accordance
with the SAM described in Section II.A; the packet transmission time, and, therefore,

the channel's slot size is now 1/&3 units of time.

Under time division multiplexing (TDM), time is divided into successive periods
called frames. Each frame contains Hi unit time successive slots, Ki of which

are assigned to bridge node i and Mi- Ki are assigned to the local users; where

i node slots

k't = o, 1kt - af, and 0 < k! < M'. The distribucion of the K
and the Mi - Ki user slots over the time frame can be arbitrary, but fixed. If its
queue is non-empty, bridge node i transmits a packet (with probability onme) in the
first available node slot. Successive user slots form a interleaved random-access
channel which is shared by the local users in accordance with the SAn.

The stability analysis of the intercomnected system, under either FDM or TDM,

is simplified by the fact that the two tandem subsystems st - (DQI.Q?) and S% = (DQZ.QI)

evolve independently in time, once the fractions aN ai i=1,2, have been fixed.
The stability of system S depends on whether both its constituent queues are

stable or not. Consider first UQ . From [2,3], we have that the SAn, induces finite

expected packet delays if and only 1if A < Xi. where Xi 1s the throughput of the SA
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in packets per unit time; (X1-0'360 for n=2, Xi-o.401 for n=3). In our case,

the random-access user subchannel occupies a fraction aé of the overall channel;

thus, the SAn throughput is a; Xi and, therefore, DQ} is stable 1if

i
A <ay Xi (20)

If DQ} is stable, then the arrival rate to Q} is piki; also, the service time

»

of Q} is equal to 1/0; . For the stabiiihy of Q} it will be required that

Py Xi < a; (21)

The following theorem combines (20) with (21) to give a sufficient condition

for system stability.
Theorem 5

The system is stable if

X Y

1 2 1
Ap <oy d e Ay <o dy s pyhy) <y, PRy <oy (2D)

The proof of theorem 5 is based on the same ideas used in the proofs of
theorem 1 and 3, and, therefore, it is omitted.

In contrast to contention multiplexing, for channel division multiplexing the
stability subregion 3 g {(Al.kz): (22) is satisfied } is always a rectangle in the
(AI.AZ) plane. Given AI’AZ’ Py +Pys and the algorithm parameter n, the channel
division parameters a;. a;, i=1,2, should be chosen so that (19) and (22) are satisfied
(1f posgible). The best choice for n is n=3, since it results in the highest SAn
throughput (Xi = 0.401), and uniformly better expected packet delay characteristics
[2]. The choice of a;.a; depends on the traffic parameters Al’ kz. Py and Py- For
example, in the symmetric case, where A, = A, = X, p; = p, = Ps Xl - Xz = X,

the largest set of A's satisfying (22) 1s obtained if we choose
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01.0

N N , a a (23)

pA+1 L S o
In this case, the system is stable 1if

X
pA+l

A<

where X=0.401, and 0<p<l.

IV. CONCLUDING REMARKS

In this paper we have given sufficient conditions for the stability of a system
of interacting queues that models the interconnection of two random-acce;s groadcast
cyannels. The stability analysis of the system with contention multiplexing has been
based on the stability analysis of a dominant system, which is analytically more
tractable than the original system and its stability guarantees the stability of the
original system. The dominant system technique is quite useful in studying the
stability of systems with multiple interacting queues and has been used in several
recent studies [8,10,11,12]. In studying the stability of the bridge node queues, we
have shown that simple intuitive stability criteria can be rigorously established
wvhen the arrival and departure processes are associated with renewal processes.

The system presented here may be extended to include more than two networks, and
it may be modified to operate under different RAA's and channel models, (e.g., carrier
sensing). The analysis of this paper provides a framework for the study of such extension
and modifications.

Finally, we note that, since the derived stability conditions are only sufficient,
we have avoided making performance comﬁarisons between the system with contention
multiplexing and the system with channel division multiplexing. In general, however,
the obtained stability subregions for the two systems are comparable. Which multiplexing
technique is best for given traffic requirements and delay constraints can be determined
only if we knew the packet delay distributions. One step towards this direction would
be the determination of the first few moments of the packet delay; the delay analysis

method developed in [14] could be useful in this respect.
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APPENDIX
PROOF OF THEOREM 1
We will present the proof for i=l, the proof for i=2 is the same.
The difficulty in pro: .ag theorem 1 lies in the fact that the operat%on of the
dominant system depends on the original system, and, therefore, we cannot claim
stationarity or even asymptotic stationarity of the processes {Ki ; qz}}.

{55 ; n>1}. Nevertheless, the following equalities are true:

=2

=2 =2 -1 _ =2 =2, . = -
Qu+1 = max (Qn - Dn , 0) + An max (Qn’ Dn) + Cn (A.1)
where G = AL - B2
n n n

It can be shown by induction, from (A.l), that

=2 =2 =1 =1 =1
Qn+1 max (c1n + Ql’ o + Al.... > €on + Am—l""’An) (A.2)

n
where ¢ = C
nm ;Ei h|

By definition, the following equalities hold 3

ol ug
sl . 2 2.5
551 A, Hg=-) D) (A.3)
n Z:i_ n —9
n=N n=
n n

i =1 =1 -
where u = N_+ Lﬁi , i=1,2, and Ni is the counting renewal process defined in the
n

proof of proposition 2.

From (A.3) we conclude that

nl N2-1
S A | N S | (

A S 2 :D > H : A4
Z:Ajiz S, » 52 K )
j=m k=it )= k=R 241

m m

3. In formulae (A.3), (A.4) we adopt the notation

a, =0 1f 1>
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From (A.2), (A.&),'and the fact that Kiﬁl. and 5:3;, we obtain

=2 -2
Uy S T H . n>1 (A.5)
where ﬁt 2 +1
=1 =2
® = max (max ( S, - ),0) y
e (DR

K=Y k=N2 +1
m m

We will show that the process {On;qz;} is stable. The substability of {6§; n>1}
will then follow from (A.5), and properties 1,2, and 3 of Section II.Ct since ai
is a proper random vatiable; (in fact, if we assume that the system is initially empty,
Q =0) .

To prove the stability of {0n;qzj} we need some preliminary results. First,
a strengthening of Theorem 4.3 in [15]. We will consider the discrete case, since
this is of interest to us.

Let (xk(n,w),xk(m)), k=41, +2, +3,... be i.i.d. random pairs defined on some
probability space (Q,F,P). For every k,xk(°). is nonnegative, proper and integer

valued, while xk(n.') is a sequence of proper random variables (or vectors). Define:

81-0

EE%
S, = X, ; k>2
kit

N =max(k: S <n ) = min(k: 2: X,>n) ; n>l
n i=1 i

z =n-S ; n>l
n Nn

vn-an(zn) i n2l

Note that, by definition, the process {vn;qzl} is regenerative with respect to the
renewal process {Sk; k>1}. z s called the "current life" of the process {Xk}.
*
Let ((xo(n,w). Xo(w)), zo(w)) be a random triplet defined on (Q,F,P), which

is independent of (xk(n.w),xk(w)), k=+1,4+2,+43,..., and define
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. k=1 v
% *

S, ==z, + ) X ; kO N
k 0 = i .
* * t

..

k X

* * b €
S ® "Zg - 2 X, 3 k0 o
i--l g’

¥

¥

* * o

Nn = max(k: Sk <n) ; nezZ

"

* * ’ Y

z =n -SN , ; neZ ¢

n .

% *

vn = XNa (zn)

n .

Let E(X,)<», and let the distribution of X, be aperiodic. Then, if the triplet
*
((xo(n.m),xo(u)), zo(m)) is appropriately constructed, it is shown in [15) that the

*
resulting process {vn s neZ} 1is strictly stationary and that ;

*
lim P(v La, ;i=1,...,m) = P(v, < a  ; i=1,...,m) ; k,€Z
o DHe = %1 k, =1 1

*
Let now, {vn} be the sequence {vn’vn+1""’ vn+k""} and (vO} be the sequence

x * :
{vo, vl....,vk,...}. We will show that N

lim P({vn} eEB) = P({v;} e B)

no .
‘l
o L] an :

uniformly over all measurable subsets B of R , where R 1is the space of all two-
sided real sequences. .
\
Wg. first need the following lemma, which is a special case of Scheffe's z
Theorem [13,Appendix II]. -
Lemma A.1l od
(-] i -4
Leep >0, 7 >, . P = 2 n =1, lim p_, = m ; 10, n>l. Then 3
ni i {=1 ni {=1 i o ni i .

o
lim Z p -1 = .
Noam {=0 I ni i I

- . B « e 0Ty T,
)

.

T N e A S AR
-D_ ..“v- J L o n"

o)



LR

& a4 T A -

A=4

The above lemma has the following corollary:

Corollary A.l

Let the conditions of Lemma A.l hold. Let N be a set of indices, and for VeN,

let c‘;, i>0, be a sequence of reals, such that IC\;|< [ <4x, for every 1>0 and

veN. Then,

«© (-
1lim 2 c: Py " z c\i’ 111 , uniformly in v

aio 120 1=0 -
Proof: By Lemma A.l, we have .
[ v ‘ [ v -]
' 1§:o €1 Ppg z-:o egmlsr 1§) Py =l —< 0. uniformly in V.

We can now express the following theorem:

Theorem A.1

Let E(x1)<o , and xl be aperiodic. Then,

lim P({v } € B™) = P({v'} € B)
oo n Y

unifomly over all measurable subsets Bw of R“

Proof: As in [15],

o * © *
p({vn} €B | z =1) = P({vo}e B | 2y = 1)
Also, because of aperiodicity,

P(z_=1) — P(z; 1)

By the total probability theorem we have

(4

P({v } € B”) = ;[,; P({v } ¢ B”lzn-i) P(z_=1)

» a0, * a, * *
P({vg} € B7) = 12_% P({vj} e B Izo-i) P(z =1)
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The theorem now follows from corollary A.l, by identifying

\)
Pni with P(zn-i), w

* v ] o, *
1 with P(zori). and g with P({vb} €B lﬁo 1); (the index set N

corresponds to the Borel sigma field associated with R).

In the proof of theorem 2, we will also need the following Lemmas.

Lemma A.2

* *
Let (Q,F) , (Q°,F") be measurable spaces, and let X» X, Y, Y be measurable mappings
from R to Q°. Let P be a probability measure on (R,F). If

*
a) {anqgl} is independent of {Yn;qz;}. and X" s independent of Y

*
b) 1lim P(xn €B)=P(X €B), uniformly inB ¢ F*
n-too

¢) 1lim P(Y €B) = P(Y* € B), uniformly in B € F*
n
1 ae o

* %
then, 1lim p((xn. Yn) €EC)=P((X, Y) € C), unformly over all measurable sets C
e

of the product space (°x Q°, F'xF”).

Proof: Let BeF”, and define Pnl(B) = P(xn € B),Pnz(B) - P(Yn € B),

*

P 2 are probability measures on

PI (B) = P(x* € B), P; (B) = P(Y* €EB); P 02 P;, P

Q°,F).

nl’

, * ;S o, LN ol
Let C € F’xF°, and Pno' Po be the product measures on (Q°x2°, F xF”) induced by
P p x &
nl’ n2) and (Pl, Pz), respectively. Let also
C(wl) = (wz EQ : (wl, wz) e C}

C(wz) = {wl e : (wl, wz) € C}

Then, by Fubini's theorem, we have

Pno((xn.Yn) €C) = Pno(C) - / P (C(wl)) P ,(dw) =
Q°

* *
- / (P ,(Cw))) - Py(C(w))) P ,(dw,) + / P,(C(w,))) P, (dw,) (A.6)
Q° Q°
.& 1’1 it Yu'ﬁ A \".q. -'\-.- - .: ";-,. L “ . '.‘. .{‘. ".' y-_ -....-..-"'-.\'.'-.:.-‘:‘.s»‘. -¢ -,.‘,‘.. " Tt T . A R - ;‘ -"- L]
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* * * * %
P((X', Y) €C) =P (C) = / P, (C(wy)) P, (du,) =

Q‘
- [ By (CCw,)) = 2\ (C (,))) By (dwy + / Py (Cw)) By (day)  (AD)
Q° Q°

Also, / « / *
P (C))) Py () = [ B (Cwp) B (du)) (A.8)
Q° N

- o et

From (A.6), (A.7), and (A.8) we obtain

- |2 x,v)eo) - pexl ¥ e ) =

n'

/ (B) (C(p) = B, (C(w,))) P} (dw)|

Q‘
- < ) IpCr e ety - (" € et B (dw)) +
3 Q°
* . %
_ + |p(xn € Cw,)) - P(X € c(mz))l P, (dw,) (A.9)
3 Q7 -
)4
By hypothesis, for every €>0 there exists N(€), such that
: IP(X_ € Cw,)) - X" € c(w,))] < €/2 (A.10)
A, n 2 2
i for every C(wz) and n > N(e).
B(Y € Clw))) - PO € clw))| > €/2 (A.11)
for every C(ml) and n > N(¢).
kS
¢ From (A.9), (A.10), and (A.11), we obtain
i | peex . ) e 0- px™, ¥ e o)) < ¢

.y for every C € F'xF” and n > N(e), and the proof is complete.

RIS IR T ICRLER S e 2N %0 b L T e
LRV ARG R R S SO RSN
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Leoma A.3
Let Y: be a randoa variable defined on a probability space (,F,P) for each n>0
and m < n. If

lim sup " <o , for every m, (A.12)
w L .

then, for every N, the following are true:
a) For every measurable set B of the induced probability space

1im inf P(max(max(Y"), 0) € B) = lim inf P(max(max(Y"), 0) € B)
o 1<a<n " - N<m<n"

b) The same equality holds with "lim inf" replaced by "lim sup”.
Proof: Let

1 .
¢n - ux{;:;l(f:). 0) ; i<nm

By (A.12), for each wefl, there exists an integer M(w), such that Y:(m)<0. for every

n and m, such that n>M(w) and 1<m<N. Therefore,

¢3;(w) - ¢:(¢»). n>M(w) (A.13)

Since M(w) is a proper random variable, using (A.13) we have

n 0
P(¢:; € B) = g_jlpw: € B, Mek) + 2: " p(¢11‘ € B, M=k)
- =

or
oo

p(o} N N > 1 - 4
€B) =P(0 £B) - ), P(4 €B, Mk)+ 3 P4 €B, Mk) (A.14)
n n kentl k=n+1
Since M(w) is proper,
4o s :
0< Y PO es, k) <POPR) — 0 ; =1, N  (A-15)
k=n+1 nhee

In view of (A.15), taking appropriate limits in both sides of (A.l4) proves the lemma.

Let (xn ; nez}, {Yn ; nEZ) be stationary random processes independent of each other,

and defined on the same probability space (Q,F,P) . Then,

T I T O A N R A A M AN -~.-".u' RO YO,
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,oo-.x

n+l n+m1-1)’ (¥

P([(xn' k’Yk"'l'..‘.Yk'.‘ﬂz‘l)l € B) -

- P([(x ’ o-ouox ). (Y Y veeosY )l € B)
n+n1 n+n1+1 n+n1+ui-1 k+n2 k+n2+1 k+n2+m2-1

for every n.k.ul.nz.nl,nz € Z, and every meagsurable set B in the induced pfobability
space.

Proof: It is easy to see that the lemma holds if B is a finite disjoint union of
measurable rectangles. An application of the monotone class theorem [16, Thm. 1.3.9)

completes the proof.

We ate now ready to show the stability of the process On defined in (A.5).

To put the problem in the framework of regenerative processes, let 21

0 iﬁ, n>1, be the

current lives of the session length processes {fi ; 1}, {fi : Kz;},.respectively.

Define
=1 =1
gl sﬁl if n-Rﬁl
a " n n
0 Otherwvise
=2 2
Rz Hﬁz if ﬂ'Rﬁz
o n n
0 Otherwise
Then, _
7
=1 z 1
2 S - z'-:n_il 5y
k-Ni m
and §2+1 n-iz
2 -2 n q2
Z.z o= R
k-Nm+1 i=m

The processes {(Et, Sﬁ) H qzl} R {(zi, R:) H qzl} are regenerative with respect

to the renewal processes {ii ; kil} ’ {ﬁ: : kzl}, respectively. The interrenewal times,

i.e., the session lengths Lﬁ R Li, are aperiodic random variables. Furthermore, 1if
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*
A, < A,, 1=1,2, then E(Li)«'. i=1,2, Therefore, there exist stationary versions
i 1 n

{((i:')*. (3:;)*) ; o1}, {(('z':. (R:)*) ; n>1} of the processes {(i'tl;, 3:) ; i},
{(i: ’ R:) H nzl}. regpectively. Note that the above stationary versions are
independent of each other, since the original processes are independent of’each
other.

From the regenerative theorem [7, Thm. 2], we have that

-1
1 & a1 EGSp

lim = 3, = ~p, A a.e. (A.16)

oo B i§l 1 E(ii) 11

=2
n E(H,)

ua L3 42 - — -4, a.e. (A-17)
oo ® 4=l E(L))

wvhere the lagt equalities in (A.16) and (A.17) follow from (14) and (16), respectively.

It follows from (A.16) that, for every fixed m,

1 2 1
lim = § =p A a.e. (A.18)
oo E-l i 11
:lqn—zlll

Using standard renewal theory arguments it can be easily shown that

linm

1 2
4o O

z, " 0 a.e. (A.19)

From (A.17), (A.19) we have that

n-z n_,z_Z n-'z'n
1m 2 Y Ratm —2 (L T A (A.20)
n i n 2 n 2
N4 i=m 4o n-zn i=m
Define - n n 1 n-in 9 ’
v -~ ¥ 35-Y R (A.21)
-1 {i=m

i=m-2
m

From (A.18), (A.20) and (17), we conclude that, for every m,
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From (A.22) and lemma A.3, we conclude, that, for every N and x,
lim iof P(O <x) = lim inf P(max(max Yl|| 0) < x) (A.23)
n>ieo n-ie N<m<n
vhere On is as defined in (A.5) and Y: is as defined in (A.21).

By theorem A.l and lemma A.2, we have that for any €>0 there exists No(e),

such that, for every N?_No(e) and every n,

lP(max(max Yn. 0) <x) - P(max((max Yn)*,O)_<_ x’)l <eg (A.24)
N<m<n n N<m<n o

* .
wvhere (max Yn) is the stationary version of (max Yn) ; that is,

N<u<n N<m<n
n-(N-1) n=(N-1)-%
(max YD = max (x gh*- ¥ T DaEhh @
N<m<n " 1<m<n-(N-1) qem— (51) iwm

%
(In (A.24) we have used the fact that (i:;) is a proper random variable). Note that

the € in (A.24) does not depend on n, since the convergence in theorem A.l is uniform.

Thus, from (A.23), (A.24), and (A.25) we conclude that

lim inf P(® < x) = 1lim inf P(max(max(Ym) y 0) <x) (A.26)
ko nfeo 1<m<n
where 2
n . n=(Z) *
ah”* - SH*' - " @d
w é-(ii)* 0 i 1

Using lemma A.4 and the methodology of theorem 2 in [6,§3], 1t can be shown that

lim P(max(max (Y "H* 0 <x) =P(Y_ <x) (A.27)
n>too . 1l<m<n :
vhere '(20)

1 [ ]
Y_ = max(sup ( ah*- o (H))O)
>0 i;-k-(il )* i =k
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By the regenerative theorem we have that

1 O 1% 1 -(;:)* 2, %

lia = 1 &8 =p.A ; lim = A =4 (A.28)
kot ¥ izgi-(zik)* 1 P17 ot K ;gzk 1 2

From (A.28) and the inequality P;A; -d, < 0 we conclude that ]

-cd*
0 L% o

la (3 S -2X @EDH=-=  ae. (A.29)
k 1--k-(iik)* fmak .

By (A.29) Y_ is proper. Therefore, from (A.26) and (A.27), we conclude that the process
{0n ; 0 > 1} is stable. The proof of the theorem is now complete.

PROOF OF THEOREM 3

Qi.Q:.Bz.B: have limiting distributions as n+io, gsince they are measurable

functions of zn, and {Zn;qu} is an irreducible and aperiodic Markov chain. Hence,

by theorem 2, the processes {Qi: N>1}, {Qi; n>1}, {Bi; n>1}, and {Bﬁ; n>1} are stable.
Consider now the pointer position process {ii; qz;} in the dominant stack {.

Since Ki is not affected by modification 2 in the algorithm, {Ei; n>1l} 1is regenerative

with respect to the underlying renewal process {ﬁt‘; kg}}. Thus, for Ai < A:,

{K:; n>1l} is stable. By constructionm, §§.3 Ki a.e. for every n>l; therefore {Ki. n>1}

is substable, and since Ki is a measurable function of Zn, it is stable.

To show the ergodicity of {Zn; n>0} we use the idea used in the proof of Theorem 1

in [8). From the stability of the processes involved we have that for any €>0 there

exists an x>0 such that

lim Pt(Q: >x) <el6 , i=1,2 ‘(A.30.a)
N4

lim Pr(B: >x) <el6 , i=1,2 (A.30.b)
n>o

lin Pr(ki>x) <e/6 , i=1,2 (A.30.¢)
n-too n

Now, using (A.30), we have
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- lia pr({q} <1 n (@2 <xin (8] xinte «xin 1 xin (€ «xb -

1 2 1 2 1 2
1- i::c Pr({q >x}V {q >x}U {8 >x} U {B_ >x}V {k >x}VU {k_>x}) >

.
¥

2
1-ua ) (pr(ql >x) + Pr(Bl >x) + pe(kl >x)) > 1-¢ (A.31)
e i=l n n

FECEXY

It ig known that if {Zn; n_>_0} is not an ergodi~ chain, then for any finite subset

V of the chain: state space we ha\'re P':(zu ey +0 as- n+®, Hence, by .(A.'31),

{2z, ;020} is sn ergodic chsin.

a8 b.%
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Figure 9

d1 versus Xi for n=2,3 and ﬂi-O.ZS, 0.50, 0.75.
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